program e503 prescott

#This program is based on the model described in "On the Needed Quantity of Government Debt"

#Federal Reserve Bank of Minneapolis Working Paper 648 by Kathryn Birkeland and Edward Prescott

#Modified by B. Goff for classroom use as example of simple DSGE framework using Gretl #Modifactions produce output growth (Y) that approximates post WWII average growth and variability

#Defining variables

#Inpute:	AR	=	retirement age less 20 years
#Inputs: #	AK	_	(note: the agent is born at t=0 and age=20)
#	AD	_	lifespan less 20 years
#		=	growth rate of technology
	gamma	=	•
#	eta	=	growth rate of the population
#	irate	=	interest rate
#	theta	=	capital share in the cobb-douglas production function#
"	delta	=	depreciation rate of the capital stock
#	alpha	=	preference parameter
#	Z	=	labor-augmenting technology in production # #
#	beta	=	time discount factor of the household
#	Npop	=	size of the initial population
#	tauh	=	input labor income tax rate
#	tauk	=	input tax rate on net capital income
#	g	=	growth rate of aggregate output
#	Ncohort	=	size of the cohort entering the workforce in period 1
#	Nwork	=	size of the working population in period 1
#	r	=	rental price of capital
#	HK	=	aggregate capital labor ratio
#	W	=	wage rate
#	CH	=	aggregate consumption to labor ratio
#	cw	=	consumption of an individual
#	hi	=	individual labor supply
#	Н	=	aggregate labor supply
#	C	=	aggregate consumption
#	K	=	aggregate capital stock
#	Y	=	aggregate output
#	X	=	aggregate investment
#	psi	=	individual transfer from the government
#	A	=	assets of an individual born in period ###
#	TotA	=	aggregate assets
#	rev	=	total tax revenue
#	trans	=	total lump-sum transfers
#	D	=	government debt
#	singleA =	assets	of an individual in each cohort
#	utility		time utility of a person entering the workforce in t=1
#			discount can be used for the welfare comparison
#		-	ns of lifetime consumption equivalents
••			and of intermite combampaton equitations

```
#Create data set with 100 years of observations nulldata 100
```

```
#Define & calibrate model parameters
```

```
series e = normal()
series gamma = 0.02 + .005*e

scalar eta=0.03
scalar irate = 0.04
scalar theta = 0.35
scalar delta = 0.05
scalar alpha = 2.14626
scalar Z = 0.026888
scalar beta = 0.980768

scalar tauh = 0.4
scalar tauk = 0.2

scalar dep = 0.175
scalar ARet = 45
scalar AD = 65
series t = time
```

#Equations defining the economy start here

```
#growth rate of per capita consumption
genr g = (1+gamma)*(1+eta)-1

smpl 1 1
series Npop = 100
smpl 2 100
series Npop = (1+eta)*Npop(-1)

smpl 1 100

#Compute the size of the cohort born in period one given the initial population
series xeta = 0
loop i=1..AD
series xeta = xeta + (1/(1+eta))^i
endloop

#This makes cohort equal to the pop (a simplification of Prescott)
genr Ncohort = Npop
```

```
#Find the size of the working population given the size of cohort one
series xwork=0
 loop i=1..ARet
  series xwork = xwork + (1/(1+eta))^i
  endloop
genr Nwork = Npop
#Compute the rental rate on capital, capital labor ratio, and wage
genr r = irate/(1-tauk)+delta
genr HK = ((r/theta)^{(1/(1-theta))})/Z
genr w = Z^{(1-theta)}(1-theta)(HK)^{(-theta)}
genr KH
              = 1/HK
#Compute individual consumption and labor
              = Z^{(1-theta)}*KH^{theta} - (g+delta)*KH
genr cw = 1/(alpha/((1-tauh)*w) + Npop/(CH*Nwork))
genr hi = 1 - alpha*cw/(w*(1-tauh))
#Compute aggregate labor, consumption, capital, output and investment
genr H = Nwork*hi
genr Ci = Npop*cw
genr K = KH*H
genr Y = (K^{theta})^*(Z^*H)^{(1-theta)}
       genr X = Y-Ci
genr Ypct = 100*ldiff(Y)
#The following section adds government sector to model
#Compute the government transfer from the lifetime budget constraint
# and Discount term for labor income
series xr = 0
 loop i= 1..ARet
  series xr = xr + ((1+gamma)/(1+irate))^{(i-1)}
 endloop
#Compute Discount term for consumption
series xd = 0
 loop i=1..AD
 series xd = xd + ((1+gamma)/(1+irate))^{(i-1)}
 endloop
#Compute Transfer at individual level
series psi = cw - (1-tauh)*w*hi*xr/xd
```

```
#Compute AD+1 and ARet+1 for following loop
genr ADp1 = AD + 1
genr ARetp1 = ARet + 1
genr ADp2 = ADp1 + 1
#Compute the lifetime asset profile of a person in cohort one
#Start by Initialize beginning period assets
 smpl 1 1
 series A = 0
 smpl 2 66
#Then Generate assets over rest of life before and after retirement
      loop i=2..ADp1
         series A = (i \le ARetp1) ? A(-1)*(1+irate)+((1-tauh)*hi*w+psi-cw)*(1+gamma)^(i-1) : A(-1)*(1+gamma)^(i-1) : A(-1)*(1+ga
1)*(1+irate)+(psi-cw)*(1+gamma)^{(i-1)}
        endloop
#Compute the value of total assets in the economy
smpl 1 66
series TotA = 0.0
series workA = 0
smpl 2 66
      loop i=2..ADp1
      series workA= A*Ncohort/((1+eta)^i*(1+gamma)^i)
      endloop
smpl 1 66
series TotA = TotA + workA
#Compute Government Accounts
series rev = tauh*w*H + tauk*(r-delta)*K
series trans
                                       = Npop*psi
series Debtg = TotA - K
series debt2 = (rev-trans)/(irate-g)
#Compute household and government balance sheet items
series HHK = (Debtg <=0) ? TotA : K
series HHD = (Debtg \leq 0 : Debtg
series GovK = (Debtg <= 0)? -Debtg : 0
series GovD = (Debtg \le 0) ? 0 : Debtg
series discount = 0.0
   loop i=1..AD
   series dis = beta^i
```

```
series discount = discount + dis
 endloop
series discounth = 0.0
 loop i=1..ARet
 series dish = beta^i
 series discounth = discounth + dish
 endloop
series utility = log(cw)*discount + alpha*log(1-hi)*discounth
scalar debtequity=0.8
genr debtpriv = TotA*debtequity
genr debty = debtpriv/Y
 genr ipayments = (1+irate)*debtpriv
              genr difyipayments= Y - ipayments
#Compute Assets of cohort 1
 loop i=1..ADp1
 series single A = A/((1+g)^i)
 endloop
#Create time series structure for dataset using 1970 as beginning year
```

setobs 1 1970 -- time-series