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Introduction

• Dynamic stochastic general equilibrium (DSGE) models are often characterized by
a set of nonlinear equations, some of which are intertemporal Euler equations.1

• In previous sessions we have seen how to solve nonlinear systems.

• Here, we will use local approximations, and transform the nonlinear system posed
by DSGE models into a system of linear equations. Now, some of these linearized
equations are difference equations.

• A variety of methods can be used to solve for these DSGE models. First, we will
focus on the Blanchard and Kahn (1980) method that relies on matrix
decomposition.2 Second, we go over the method of undetermined coefficients in
Uhlig (1997) that applies even when certain matrix operations are not available.

1
These slides borrow from notes by Larry Christiano, Jesús Fernández-Villaverde, Juan Rubio, José-V́ıctor Ŕıos-Rull,

Makoto Nakajima, and Fabrizio Perri. See further references in the syllabus.
2

Klein (2000) and King and Watson (2001) proposed more generalized matrix decomposition methods that resolves some
noninvertibility issues. You are very encouraged to read their manuscripts.
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• The methods based on linearized Euler equations are useful to solve more than
pareto optimal economies. These include complete market economies with
distortions (e.g. labor income taxation). That is, we can solve problems for which
not necessarily a social planner (first best) solution exists.

• In future sessions, we will use global methods to solve for the decision rules using
the Euler equations that we will not linearize. Our working examples will be
models with market incompleteness, without and with aggregate risk.
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The neoclassical growth model

• A continuum Nt of identical households that life infinitely maximize:

max
ct≥0,kt+1≥0,ht∈[0,1]

∞∑
t=0

βtNt u(ct , ht)

subject to the budget constraint,

Ct + Kt+1 = wt Ht + (1 + rt − δ) Kt

where Xt = xtNt and where Nt is population that grows at constant rate n, i.e.,
Nt+1

Nt
= 1 + n.
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• Note that we can rewrite this problem by dividing everything by Nt :

max
ct≥0,kt+1≥0,ht∈[0,1]

∞∑
t=0

βt u(ct , ht)

subject to the budget constraint,

ct + kt+1(1 + n) = wt ht + (1 + rt − δ) kt .

where we have used the fact that
Kt+1

Nt
=

Kt+1

Nt+1

Nt+1

Nt
= kt+1(1 + n).

• Firms rent capital and solve a static problem:

max
ht ,Kt

Yt − wthtNt − rtKt

subject to
Yt = eztF (Kt , htNt)

and K0 given.

• To make life easy, the model is already stationary.
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Recursive competitive equilibrium (RCE)

A RCE is a set of functions v(k,K , z), c(k,K , z), k ′(k,K , z), h′(k,K , z); prices
w(K , z) and r(K , z); and an aggregate law of motion of capital Γk(K , z) and aggregate
labor Γh(K , z) such that,3

1 Given w , r , ΓK and Γh, the value function v(k,K , z) solves the Bellman equation,

v(k,K , z) = max
c≥0,k′≥0,h∈[0,1]

u(c, h) + βEz′|zv(k ′,K ′, z ′) (1)

such that

c + k ′ = w(K , z)h + (1 + r(K , z)− δ)k

z ′ = ρz + ε, ε ∼ N(0, σ2
ε)

2 Factor prices equate marginal products, r(K , z) = ezFK (K ,H) and
w(K , z) = ezFH(K ,H).

3 Aggregate consistency, K ′ = Γ(K , z) = k ′(K ,K , z) and H = Γ(K , z) = h(K ,K , z).

4 Market clearing, ezF (K ,H) = c(K ,K , z) + i(K ,K , z).

3
In general, note that the aggregate states of this economy are aggregate capital, K , and aggregate labor, H. However,

given the CRS properties of the aggregate production function the capital-labor ratio will be a sufficient statistic to solve for this
economy. This way, to ease the exposition, I avoid writing explicitly aggregate labor in the optimal functions.
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Roadmap

1 Find the nonlinear system that characterizes the model economy.

2 Stationarize the economy.

3 Compute the steady state.

4 Locally approximate (1st order Taylor) the nonlinear system around the steady
state. The system is linear in controls and state variables. 4 Some equations in the
linear system are difference equations.

5 Express the linear system in some matrix representation. This representation is

what differs by solution method. Then, use a matrix decomposition method to

derive:

• Optimal decision rules, i.e., linear functions from the state variables to the
control variables.

• Laws of motion for the endogenous state varialbes, i.e., linear functions from
the state variables to the state variables in the next period.

4
State variables can be exogenous or endogenous.
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We assume that there is no population growth n = 0 and normalize population level to 1.

Let’s assume parametric form for utility and production functions:

• Let’s assume the utility function is,

u(c, h) = ln c − κ h1+ 1
ν

1 + 1
ν

• and aggregate technology is,

ezF (k, h) = ezk1−θhθ
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Step 1: Characterize the solution (a nonlinear system)
• The solution is characterized by these set of equilibrium conditions:

1

c
= β Ez′|z

1

c ′
(1 + r − δ)

w

c
= κ h

1
ν

r = (1− θ)ezk−θhθ

w = θezk1−θhθ−1

c + k ′ = wh + rk + (1− δ)k

z ′ = ρz + ε

and the transversality condition.

• The equilibrium conditions of the model are the household FOC(k’) [Euler
Equation], household FOC(h), firm FOC(k), firm FOC(h), and the two aggregate
laws of motion. Note that in the equilibrium conditions above we are already
imposing aggregate consistency.

• There are other possibilities for the choice of variables (e.g. we could have used
Lagrangian multipliers as variables).

Raül Santaeulàlia-Llopis (Wash.U.) Linearized Euler Equation Methods Spring 2015 10 / 61



Step 2: Stationarize the economy

• We have assumed above that there is no growth in TFP nor population. If any of
these two happens, we will need to stationarize the economy either with a
deterministc trend or a stochastic trend.
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Step 3: Find the steady state

• Set the productivity shock to its unconditional mean, z∗ = z ′ = z = 0.

• This implies

k∗ = k ′ = k

c∗ = c ′ = c

h∗ = h′ = h

r∗ = r ′ = r

w∗ = w ′ = w
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• The steady-state equilibrium is

1 = β(1 + r∗ − δ)

w∗

c∗
= κ h∗

1
ν

r∗ = (1− θ)ez
∗
k∗
−θ

h∗
θ

w∗ = θez
∗
k∗

1−θ
h∗
θ−1

c∗ = w∗h∗ + (r∗ − δ)k∗

z∗ = 0

• Given values for k∗

y∗ , c∗

y∗ , h∗, θ, ν, and normalizing y∗ = 1, we can calibrate the
values of δ, β and κ.
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Step 4: Locally approximate the nonlinear system around
the steady state with a log-linear system

• Take each equation in the nonlinear system, and totally differentiate it around the
steady state.

• A useful way to do so is by replacing each variable x by

x = x∗ e x̂ ' x∗(1 + x̂)

where x̂ is the log-deviation with respect to steady state, x∗. Note that x̂ ŷ ' 0.
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• The nonlinear system is log-linearized as

1

c∗e ĉ
= β Ez′|z

1

c∗e ĉ′
(1 + r∗e r̂

′ − δ)

w∗eŵ

c∗e ĉ
= κ

(
h∗e ĥ

) 1
ν

r∗e r̂ = (1− θ)ez
(
k∗e k̂

)−θ (
h∗e ĥ

)θ
w∗eŵ = θez

(
k∗e k̂

)1−θ (
h∗e ĥ

)θ−1

c∗e ĉ + k∗e k̂
′

= w∗eŵh∗e ĥ + r∗e r̂k∗e k̂ + (1− δ)k∗e k̂

z ′ = ρz + ε
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• Then, simplify using steady-state conditions ...

1

e ĉ
= Ez′|z

1

e ĉ′
(1 + βr∗ r̂ ′)

eŵ

e ĉ
=

(
e ĥ
) 1

ν

e r̂ = ez
(
e k̂
)−θ (

e ĥ
)θ

eŵ = ez
(
e k̂
)1−θ (

e ĥ
)θ−1

c∗ĉ + k∗k̂ ′ = w∗h∗(ŵ + ĥ) + r∗k∗(r̂ + k̂) + (1− δ)k∗k̂

z ′ = ρz + ε
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• Remark. The simplification of the Euler equation follows these steps:

1

c∗e ĉ
= β Ez′|z

1

c∗e ĉ′
(1 + r∗e r̂

′ − δ)

1

e ĉ
= β Ez′|z

1

e ĉ′
(1 + r∗(1 + r̂ ′)− δ)

1

e ĉ
= β Ez′|z

1

e ĉ′
(1 + r∗ − δ + r∗ r̂ ′)

1

e ĉ
= Ez′|z

1

e ĉ′
(1 + βr∗ r̂ ′)

and note that ln(1 + βr∗ r̂ ′) ≈ βr∗ r̂ ′.
• Remark. To simplify the budget constraint above we have used e x̂ ' (1 + x̂), and

x̂ ŷ ' 0, as follows:

c∗e ĉ + k∗e k̂
′

= w∗eŵh∗e ĥ + r∗e r̂k∗e k̂ + (1− δ)k∗e k̂

c∗(1 + ĉ) + k∗(1 + k̂ ′) = w∗(1 + ŵ)h∗(1 + ĥ) + r∗(1 + r̂)k∗(1 + k̂) + (1− δ)k∗(1 + k̂)

c∗ĉ + k∗k̂ ′ = w∗h∗(ŵ + ĥ) + r∗k∗(r̂ + k̂) + (1− δ)k∗k̂
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• and taking natural logs (except for the productivity shock process, and the budget
constraint)

−ĉ = Ez′|z [βr∗ r̂ ′ − ĉ ′]

ĥ = ν(ŵ − ĉ)

r̂ = z + (−θ)k̂ + θĥ

ŵ = z + (1− θ)k̂ − (1− θ)ĥ

c∗ĉ + k∗k̂ ′ = w∗h∗(ŵ + ĥ) + r∗k∗(r̂ + k̂) + (1− δ)k∗k̂

z ′ = ρz + ε
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• Remark. Linearization delivers a linear law of motion for the choice variables that
displays certainty equivalence, i.e., it does not depend on σ.
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• Remark. Note that here we have log-linearized the system. We could have instead
linearized the system. Some practitioners have favored logs because the exact
solution of the neoclassical growth model in the case of log utility and full
depreciation is loglinear.

This question is not completely settled (see a discussion in Aruoba,
Fernández-Villaverde, and Rubio (2006))
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Step 5: Matrix representation and decomposition of the
linear system

Now, we express the linear system in some matrix representation to obtain the linearized
decision rules using alternative matrix decomposition methods

• Eigenvalue decomposition, Blanchard and Kahn (1980)

• Undetermined coefficients, Uhlig (1997)

The method of undetermined coefficients deals with noninvertibility problems that may
arise by the application of the Blanchard-Kahn method. QZ decomposition in Sims
(2002), and the generalized Schur decomposition in Klein (2000), also resolve that
problem.
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The Blanchard and Kahn (1980) method: Eigenvalue
decomposition

• Denote the number of exogenous state variables as nz , the number of endogenous
state variables as ns , the total number of state variables n = nz + ns and the
number of control variables m.

• There is one exogenous state, z , that is, nz=1.

• The number of endogenous state variables coincides with the number of equations
that include an expectation operator, ns=1.

• There is some degree of freedom in choosing the number of control variables, m.
Our exercise includes four variables (c, h,w , r), that is, m=4. However, we can
substitute out two equations (say w and r), leaving only c and h.
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• Write the following matrix representation,

A(n+m)×(n+m)

[
x ′n×1

Ey ′m×1

]
= B(n+m)×(n+m)

[
x
y

]
+ C(n+m)×nv v ′nv×1

where x = [zk]′ is the vector of state variables, and y = [c, h, r ,w ]′ is the vector of
endogenous variables.

• The total number of equations is n + m, and E is an expectation operator with
information at the current period.
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• Remark. There is only one expecation operator, and it is associated with y ′. That
is, next period’s state variable cannot be included in the expectation operator. If
that were the case one has to substitute out the endogenous state variable by a
control one.
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• First, rearrange the linerized system:

z ′ = ρz + ε

Ez′|z [βr∗ r̂ ′ − ĉ ′] = −ĉ

0 = ν(ŵ − ĉ)− ĥ

k∗k̂ ′ = w∗h∗(ŵ + ĥ) + r∗k∗(r̂ + k̂) + (1− δ)k∗k̂ − c∗ĉ +

0 = z + (−θ)k̂ + θĥ − r̂

0 = z + (1− θ)k̂ − (1− θ)ĥ − ŵ
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• Explicitly, in our example


1 0 0 0 0 0
0 0 −1 0 βr∗ 0
0 0 0 0 0 0
0 k∗ 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0





z′

k′

Ec′

Eh′

Er′

Ew′

 =


ρ 0 0 0 0 0
0 0 −1 0 0 0
0 0 −ν −1 0 ν
0 (1 + r∗ + δ)k∗ −c∗ w∗h∗ r∗k∗ w∗h∗

1 −θ 0 θ 1 0
1 1− θ 0 −(1− θ) 0 1




z
k
c
h
r
w

 +


1
0
0
0
0
0

 ε

Raül Santaeulàlia-Llopis (Wash.U.) Linearized Euler Equation Methods Spring 2015 26 / 61



• Now, multiply the system from the left A−1 (assuming that A is invertible).

• Then the matrix representation of the linear system becomes[
x ′n×1

Ey ′m×1

]
= A−1B

[
x
y

]
+ A−1C v ′
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• Remark. In our example A is actually not invertible. Klein (2000) overcomes the
potential noninvertibility of A by implementing a complex generalized Schur
decomposition to decompose A and B. That is a generalization of the QZ
decomposition that allows for complex eigenvalues associatied with A and B. The
Schur decomposition of A and B are given by

QÃZ = S

QB̃Z = R

where (Q,Z) are unitary and (S ,T ) are upper triangular matrices with diagonal

elements containing the generalized eigenvalues of Ã and B̃.
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• And simplifying notation,[
x ′n×1

Ey ′m×1

]
= F

[
x
y

]
+ G v ′

where F = A−1B is a (n + m)× (n + m) matrix, and G is a (n + m)× (nv ) matrix.
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• Now, we apply the Jordan decomposition to the matrix F . 5 Recall that given a
square matrix F , we want to choose a matrix M such that M−1FM is as nearly
diagonal as possible. 6

• The Jordan canonical form is

F = HJH−1 = [d1, d2, ..., dn+m]


λ1 0 0 . 0
0 λ2 0 . 0
. . . . .
0 0 0 . λn+m

 [d1, d2, ..., dn+m]−1

where {λi}n+m
i=1 are eigenvalues and the column vectors {di}n+m

i=1 are associated
eigenvectors.

5
See, for instance, appendix B in Gilbert and Strang.

6
In the simplest case, F has a complete set of eigenvectos and they become the columns of M.
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• The eigenvalues {λi}n+m
i=1 are ordered such that

|λ1| < |λ2| < ... < |λn+m|.

• Let the number of eigenvalues outside the unit circle be h.
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• Blanchard-Kahn Conditions

1 If h = m, the solution to the system is unique (saddle path stable)
2 If h > m, theres is no solution to the system.
3 If h < m, there are infinite solutions (indeterminacy).
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• Assume we have a unique solution, i.e., h = m.

• Let’s partition the matrix J such that the upper-left block contains only the
eigenvalues inside the unit circle. Partition the matrix G accordingly.

• Then, [
x ′

Ey ′

]
= H

[
J1 0
0 J2

]
H−1

[
x
y

]
+

[
G1

G2

]
v ′

• Note that J2 is said to be explosive because Jn
2 diverges to infinite as n increases.
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• Multiply H−1 from the left and we get:

• Then,

H−1

[
x ′

Ey ′

]
=

[
J1 0
0 J2

]
H−1

[
x
y

]
+ H−1

[
G1

G2

]
v ′
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• Partition H and H−1 as follows:

H =

[
H11 H12

H21 H22

]
where H11 is conformable with J1, and

H−1 =

[
Ĥ11 Ĥ12

Ĥ21 Ĥ22

]
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• Then, use [
x̃
ỹ

]
=

[
Ĥ11 Ĥ12

Ĥ21 Ĥ22

][
x
y

]

to rearrange [
x̃ ′

Eỹ ′

]
=

[
J1 0
0 J2

] [
x̃
ỹ

]
+

[
G̃1

G̃2

]
v ′

• Recall that J is diagonal, so the upper part and the lower part can be easily
separated. We aim at transforming the system so that control variables depend
upon only the unstable eigenvalues of A contained in J2.
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• The unstable piece of the system is

Eỹ ′ = J2ỹ + G̃2 v ′
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• Now, isolate

ỹ = J−1
2 Eỹ ′ − J−1

2 G̃2 v ′ (2)

and forward one period

ỹ ′ = J−1
2 Eỹ ′′ − J−1

2 G̃2 v ′′ (3)

• and use the law of iterated expecations EtEt+1(xt) = Et(xt) to rewrite (3) as:

Eỹ ′ = J−1
2 Eỹ ′′ − J−1

2 G̃2 Ev ′′

that we can plug back into (2):

ỹ = J−2
2 Eỹ ′′ − J−2

2 G̃2 Ev ′′ − J−1
2 G̃2 v ′
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• If we keep iterating forward we get

ỹ = −J−1
2 G̃2 v ′ − J−2

2 G̃2 Ev ′′ − J−2
2 G̃3 Ev ′′′... (4)

• Then (4) can be simplified as

ỹ = −J−1
2 G̃2 v ′

where we have used E(v ′) = E(v ′′) = E(v ′′′) = ... = 0 and limn→∞ J−n
2 = 0

because J2 contains the explosive eigenvalues.
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• Plugging back the formula for ỹ ,

ỹ = −J−1G̃2v
′[

Ĥ21 + Ĥ22

]
ỹ = −J−1

[
Ĥ21 G1 + Ĥ22 G2

]
v ′

• That is, the optimal decision rules (i.e., mappings from x and v ′ to y) are

ỹ = −Ĥ−1
22 Ĥ21 x − Ĥ−1

22 J−1
2

[
Ĥ21 G1 + Ĥ22 G2

]
• Once we have the decision rules, we can use the law of motion to obtain x ′.
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The method of undetermined coefficients, Uhligh (1997)

• We deal with the same linearized model as in the previous section:

0 = Ez′|z [βr∗ r̂ ′ − ĉ ′ + ĉ]

ĥ = ν(ŵ − ĉ)

r̂ = z + (−θ)k̂ + θĥ

ŵ = z + (1− θ)k̂ − (1− θ)ĥ

c∗ĉ + k∗k̂ ′ = w∗h∗(ŵ + ĥ) + r∗k∗(r̂ + k̂) + (1− δ)k∗k̂

z ′ = ρz + ε′

E [ε′] = 0
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• Substitute away factor prices,

0 = Ez′|z [βr∗(z ′ + (−θ)k̂ ′ + θĥ′) − ĉ ′ + ĉ] (5)

ĥ = ν(z + (1 − θ)k̂ − (1 − θ)ĥ − ĉ) (6)

c∗ĉ + k∗k̂ ′ = y∗ŷ + (1 − δ)k∗k̂ (7)

z ′ = ρz + ε (8)

E [ε′] = 0 (9)

where to simplify notation we are using the Euler theorem:

y∗ŷ = w∗h∗(z + (1 − θ)k̂ − (1 − θ)ĥ + ĥ) + r∗k∗(z + (−θ)k̂ + θĥ + k̂)

= y∗(z + (1 − θ)k̂ + θĥ)

Raül Santaeulàlia-Llopis (Wash.U.) Linearized Euler Equation Methods Spring 2015 42 / 61



• Substitute away consumption. To do so, isolate consumption from the FOC of labor (6),

ĉ = z + (1 − θ)k̂ − (1 − θ)ĥ −
1

ν
ĥ

• Plug consumption into the Euler equation (5)

0 = Ez′|z [βr∗(z ′ + (−θ)k̂ ′ + θĥ′) − (z ′ + (1 − θ)k̂ ′ − (1 − θ)ĥ′ −
1

ν
ĥ′)]

+z + (1 − θ)k̂ − (1 − θ)ĥ −
1

ν
ĥ

and the budget constraint (7):

c∗(z + (1 − θ)k̂ − (1 − θ)ĥ −
1

ν
ĥ) + k∗k̂ ′ = y∗(z + (1 − θ)k̂ + θĥ) + (1 − δ)k∗k̂
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• That is, the system (5)-(9) reduces to

0 = Eψ1k̂
′ + ψ2k̂ + ψ3ĥ

′ + ψ4ĥ + ψ5z
′ + ψ6z (10)

0 = η1k̂
′ + η2k̂ + η3ĥ + η4z (11)

z ′ = ρ z + ε′ (12)
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• Where

k̂ ′ : ψ1 = βr∗(−θ)− (1− θ)

k̂ : ψ2 = −(1− θ)

ĥ′ : ψ3 = βr∗θ − ((θ − 1)− 1

ν
)

ĥ : ψ4 = −((θ − 1)− 1

ν
)

ẑ ′ : ψ5 = βr∗ − 1

ẑ : ψ6 = −1

and

k̂ ′ : η1 = −k∗

k̂ : η2 = −c∗(1− θ) + y∗(1− θ) + (1− δ)k∗

= i∗(1− θ) + (1− δ)k∗

= δk∗(1− θ) + (1− δ)k∗

= (1 + δθ)k∗

ĥ : η3 = −c∗((θ − 1)− 1

ν
) + y∗θ

ẑ : η4 = −c∗ + y∗ = δk∗
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• Postulate the decision rules for k̂ ′ and ĥ to be

k̂ ′ = φ1k̂ + φ2z (13)

ĥ = φ3k̂ + φ4z (14)

• That is, we postulate decision rules that are linear in k̂ and ẑ , where φ1, φ2, φ3 and
φ4 are unknowns.

• We also know that
z ′ = ρz + ε′. (15)
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• Plug (13)-(15) into the system (10)-(12) to obtain:

0 = Eψ1 k̂
′ + ψ2 k̂ + ψ3 ĥ

′ + ψ4 ĥ + ψ5z
′ + ψ6z

= Eψ1(φ1 k̂ + φ2z) + ψ2 k̂ + ψ3(φ3 k̂
′ + φ4z

′) + ψ4(φ3 k̂ + φ4z) + ψ5(ρ z + ε
′) + ψ6z

= Eψ1(φ1 k̂ + φ2z) + ψ2 k̂ + ψ3(φ3(φ1 k̂ + φ2z) + φ4(ρ z + ε
′))

+ψ4(φ3 k̂ + φ4z) + ψ5(ρ z + ε
′) + ψ6z

= E(ψ1φ1 + ψ2 + ψ3φ3φ1 + ψ4φ3) k̂ + (ψ1φ2 + ψ3φ3φ2 + ψ3φ4ρ + ψ4φ4 + ψ5ρ + ψ6) z

and

0 = η1 k̂
′ + η2 k̂ + η3 ĥ + η4z

= η1(φ1 k̂ + φ2z) + η2 k̂ + η3(φ3 k̂ + φ4z) + η4z

= (η1φ1 + η2 + η3φ3)k̂ + (η1φ2 + η3φ4 + η4)z

where we have used E(ε′) = 0.

• That is...
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• That is,

0 = γ1k̂ + γ2z (16)

0 = γ3k̂ + γ4z (17)

where,

γ1 = ψ1φ1 + ψ2 + ψ3φ3φ1 + ψ4φ3

γ2 = ψ1φ2 + ψ3φ3φ2 + ψ3φ4ρ+ ψ4φ4 + ψ5ρ+ ψ6

γ3 = η1φ1 + η2 + η3φ3

γ4 = η1φ2 + η3φ4 + η4

• Then, there are four unknowns in (16) and (17), {φ1, φ2, φ3, φ4}.

• To solve for the uknonwns, set (γ1, γ2, γ3, γ4) = 0
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• General solution method for undetermined coefficent:

0 = Ax ′ + Bx + Cy + Dz

0 = EFx ′′ + Gx ′ + Hx + Jy ′ + Ky + Lz ′ + Mz

z ′ = Nz + ε′ and E(ε′) = 0.

where N has only stable eigenvalues. x are (m × 1) endogenous state variables, z
are (k × 1) exogenous state variables, and y are (n× 1) control variables, and ε′ is
a vector of shocks (k × 1).
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• Then guess the optimal decision rule to be

x ′ = Px + Qz

y = Rx + Sz

where P,Q,R and S are unknowns.
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Investment shocks: Greenwood, Hercowitz, and Krusell
(1997,2000) and Fisher (2006)

In the case of the one sector formulation we replace:

• Production function:
yt = eatF (kt , ht)

• Investment equation:
evt it = kt+1 − (1− δ)kt

where Vt = V0(1 + λv )evt is investment-specific technical change and we assume
V0 = 1 and λv = 0.

Raül Santaeulàlia-Llopis (Wash.U.) Linearized Euler Equation Methods Spring 2015 51 / 61



Capital utilization: King and Rebelo (1999) and
Christiano, Eichenbaum and Evans (2005)

• Production function:
yt = eatF (utkt , ht)

• Investment equation:
evt it = kt+1 − (1− δ(ut))kt

where δ(ut) = δ0 + δ1

(
u

1+ 1
ξ

t − 1

)
where ξ is the elasticity of depreciation.
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Habit persistence: Boldrin, Christiano, and Fisher (2001)

• Utility function:

u(ct , ht) = ln (ct − ηct−1)− κ h
1+ 1

ν
t

1 + 1
ν

where η is a consumption habit parameter.
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The intensive and extensive margin: Hansen (1985) and
Cho and Cooley (1994)

We model the intensive ht hours per day, and extensive et days per year, separately. The
extensive margin can have different interpretations. In our example, the individual
extensive margin is days worked per year and the aggregate extensive margin is the
employtment rate, et .

7

• Utility function:

u(ct , ht , et) = g(c)− v(h)e − φ(e)e

where

g(ct) =
c1−σ

1− σ , v(ht) = κh
h

1+ 1
νh

t

1 + 1
νh

, φ(et) = κe
e

1
νe
t

1 + 1
νe

7
That is, et is the aggregate number of days worked by all individuals over the aggregate number of days available to all

individuals in the labor force.
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• That is,

max
ct≥0,ht∈(0,1),et∈(0,1)

∞∑
t

βtu(ct , ht , et) =
c1−σ
t

1− σ − κh
h

1+ 1
νh

t

1 + 1
νh

et − κe
e

1+ 1
νe

t

1 + 1
νe

subject to

ct + kt+1(1 + n) = wthtet + (1 + rt − δ)kt
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• Then, FOC(h) is

c−σwe = κhh
1
νh e

c−σw = κhh
1
νh

h =

(
1

κh

)νh (
c−σw

)νh .
Hence, holding everything else constant,

∂h

∂w
= νh

(
1

κh

)νh (
c−σw

)νh−1
c−σ = νh

(
1

κh

)νh (
c−σw

)νh c−σ

c−σw
= νh

h

w

That is, the elasticity of the intensive labor supply ht with respect to wages is νh,

∂h

∂w

w

h
= νh.
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• Then, FOC(e) is

c−σwh − κh
h

1+ 1
νh

t

1 + 1
νh

= κee
1
νe

κhh
1
νh h − κh

h
1+ 1

νh
t

1 + 1
νh

= κee
1
νe

κhh
1+ 1

νh − κh
h

1+ 1
νh

t

1 + 1
νh

= κee
1
νe

(
1 +

1

νh

)
κh

h
1+ 1

νh

1 + 1
νh

− κh
h

1+ 1
νh

t

1 + 1
νh

= κee
1
νe

1

νh
κh

h
1+ 1

νh

1 + 1
νh

= κee
1
νe

1

νh
v(h) = κee

1
νe

e =

(
1

κe

)νe ( 1

νh
v(h)

)νe
where we have used the fact that, from FOC(ht), c−σw = κhh

1
νh .
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Hence, holding everything else constant,

∂e

∂w
= νe

(
1

κe

)νe ( 1

νh
v(h)

)νe−1
1

νh

∂v(h)

∂h

∂h

∂w

= νe

(
1

κe

)νe ( 1

νh
v(h)

)νe−1
1

νh
κhh

1
νh
∂h

∂w

= νe

(
1

κe

)νe ( 1

νh
v(h)

)νe−1
1

νh
κhh

1
νh νh

h

w

= νee
1

1
νh
v(h)

1

νh
κhh

1
νh νh

h

w
= νee

1
1
νh
v(h)

κhh
1
νh

h

w
= νee

1
1
νh
v(h)

κhh
1+ 1

νh
1

w

= νee
1

1
νh
κh

h
1+ 1

νh
t

1+ 1
νh

κhh
1+ 1

νh
1

w
= νee

1
1
νh

1

1+ 1
νh

1

w

= νe(1 + νh)
e

w
.

That is, the elasticity of the extensive labor supply et with respect to wages is νe(1 + νh),

∂e

∂w

w

e
= νe(1 + νh).
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• Then, the elasticity of labor supply htet with respect to wages,

∂he

∂w

w

he
=

(
∂h

∂w
e + h

∂e

∂w

)
w

he

=
∂h

∂w

w

h
+
∂e

∂w

w

e

= νh + νe(1 + νh).
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• Then, FOC(kt+1) is

βtc−σt (1 + n)(−1) + βt+1c−σt+1(1 + rt+1 − δ) = 0

c−σt (1 + n) = βc−σt+1(1 + rt+1 − δ),

that is, (
ct+1

ct

)σ
= β

Nt

Nt+1
(1 + rt+1 − δ),
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Taking stock,

• FOC(h) is

ht =

(
1

κh

)νh (
c−σt wt

)νh
• FOC(et) is

et =

(
1

κe

)νe ( 1

νh + 1
κhh

1+ 1
νh

t

)νe
• FOC(kt+1) is (

ct+1

ct

)σ
= β

Nt

Nt+1
(1 + rt+1 − δ)

• Factor prices (wt) is

wt = ezt
(

k

eh

)1−θ

• Factor prices (rt) is

rt = ezt
(
eh

k

)θ
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