
ECON7020: MACROECONOMIC THEORY I Martin Boileau

A CHILD'S GUIDE TO DYNAMIC PROGRAMMING

1. Introduction

This is a simple guide to deterministic dynamic programming. In what follows, I borrow

freely from King (1987) and Sargent (1987).

2. The Finite Horizon Problem

Consider the following time separable, recursive, problem:

max
TX

t=0

Ft(xt;ut) + W0(xT+1) (P )

subject to

xt+1 = Qt(xt;ut); t = 0; : : : ; T ; (1)

x0 = ¹x0; (2)

xT+1 ¸ 0; (3)

ut 2 ¨; t = 0; : : : ; T: (4)

where,

xt is a n-vector of state variables (xit).

ut is a m-vector of control variables.

F (¢) is a twice continuously di®erentiable objective function.

Q(¢) is a vector of twice continuously di®erentiable transition function.

The di®erent constraints are:

Equation (1) de¯nes the transition equations for each state variables.

Equation (2) shows initial conditions for each state variable.

Equation (3) are terminal conditions for each state variable.

Equation (4) de¯nes the feasible set for control variables.
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This problem can be solved using a standard constrained optimization. The La-

grangian is

L =
TX

t=0

F (xt;ut) + W0(xT+1) +
TX

t=0

¤t [Q(xt;ut) ¡ xt+1)] ;

where ¤t is a n-vector of Lagrange multiplier. The ¯rst-order conditions are:

@L

@ut
=

@Ft

@ut
+

@Qt

@ut
¤t = F2t(xt;ut) + Q2t(xt;ut)¤t = 0; t = 0; : : : ; T ;

@L

@xt
=

@Ft

@xt
+

@Qt

@xt
¤t ¡ ¤t¡1 = F1t(xt;ut) + Q1t(xt;ut)¤t ¡ ¤t¡1 = 0; 1; : : : ; T ;

@L

@xT+1
=

@W0

@xT+1
¡ ¤T = W 0

0(xT+1) ¡ ¤T = 0:

Where @Ft=@ut is a m-vector with @Ft=@ujt in the jth row (ujt is the jth element of ut)

and @Ft=@xt is a n-vector with @Ft=@xit in the ith row. Similarly, @Qt=@ut is a m £ n

matrix with element @Qit=@ujt in its ith column and jth row. Also, @Qt=@xt is a n £ n

matrix with element @Qit=@xjt in its ith column and jth row. Finally, @W0=@xT+1 is a

n-vector with element @W0=@xjt in its jth row.

Abstracting from second-order conditions, the maximum can be found as the solution

to the set of ¯rst-order conditions. These can be solved recursively. For, example, at

period T , we have

F2T (xT ;uT ) + Q2T (xT ;uT )¤T = 0;

W 0
0(xT+1) ¡ ¤T = 0;

xT+1 = QT (xT ;uT ):

Given that xT is ¯xed in period T , these can be solved to yield feedback rules:

xT+1 = fT (xT );

uT = hT (xT );

¤T = `T (xT ):

Then, in period T ¡ 1, we have

F2T¡1(xT¡1;uT¡1) + Q2T¡1(xT¡1;uT¡1)¤T¡1 = 0;

F1T (xT ;uT ) + Q1T (xT ;uT )¤T ¡ ¤T¡1 = 0;
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xT = QT (xT¡1;uT¡1):

Given the previous feedback rules, these can be solved for

xT = fT¡1(xT¡1);

uT¡1 = hT¡1(xT¡1);

¤T¡1 = `T¡1(xT¡1):

Continuing the above recursion, we obtain feedback rules of the form

xt+1 = ft(xt); t = 0; : : : ; T

ut = ht(xt); t = 0; : : : ; T ;

¤t = `t(xt); t = 0; : : : ; T:

These rules or optimal policies are indexed by time. This is because, in general, these

optimal rules vary through time.

3. An Economic Example

Consider the following economic example.

max ln(c0) + ¯ ln(c1) + ¯2 ln(c2)

subject to

at+1 = (1 + r)at ¡ ct; t = 0; 1; 2;

a0 = ¹a0;

a3 = 0:

Clearly, if a3 = 0, then we must have that c2 = (1 + r)a2 and our objective function

becomes:

max ln(c0) + ¯ ln(c1) + ¯2 ln((1 + r)a2)

The Lagrangian is

L = ln(c0)+¯ ln(c1)+¯2 ln((1+r)a2)+¸0 [(1 + r)a0 ¡ c0 ¡ a1]+¸1 [(1 + r)a1 ¡ c1 ¡ a2] :
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The ¯rst order conditions are

@L

@ct
= ¯t 1

ct
¡ ¸t = 0; t = 0; 1;

@L

@a1
= (1 + r)¸1 ¡ ¸0 = 0;

@L

@a2
= ¯2 1

a2
¡ ¸1 = 0:

In period 1, we have

¯
1

c1
¡ ¸1 = 0;

¯2 1

a2
¡ ¸1 = 0;

a2 = (1 + r)a1 ¡ c1:

These are solved to yield

a2 = f1(a1) = (1 + r)

µ
¯

1 + ¯

¶
a1;

c1 = h1(a1) = (1 + r)

µ
1

1 + ¯

¶
a1;

¸1 = `1(a1) = ¯

µ
1 + ¯

1 + r

¶
1

a1
:

Then, in period 0, we have
1

c0
¡ ¸0 = 0;

(1 + r)¸1 ¡ ¸0 = 0;

a1 = (1 + r)a0 ¡ c0;

which can be solved for

a1 = f0(a0) = (1 + r)

µ
¯(1 + ¯)

1 + ¯(1 + ¯)

¶
a0;

c0 = h0(a0) = (1 + r)

µ
1

1 + ¯(1 + ¯)

¶
a0;

¸0 = `0(a0) =

µ
1 + ¯(1 + ¯)

1 + r

¶
1

a0
:
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Clearly, we have solved the whole system. Consumption and assets evolve according

to the following scheme. Given a0, consumption and assets purchased in period 0 are

c0 = (1 + r)

µ
1

1 + ¯(1 + ¯)

¶
a0;

a1 = (1 + r)

µ
¯(1 + ¯)

1 + ¯(1 + ¯)

¶
a0:

Then, given a1, consumption assets purchased at period 1 are

c1 = h1(a1) = (1 + r)

µ
1

1 + ¯

¶
a1;

a2 = f1(a1) = (1 + r)

µ
¯

1 + ¯

¶
a1:

4. Dynamic Programming

Let's recall the time separable, recursive, problem:

max
TX

t=0

Ft(xt;ut) + W0(xT+1) (P )

subject to

xt+1 = Qt(xt;ut); t = 0; : : : ; T ; (1)

x0 = ¹xi0; (2)

xT+1 ¸ 0; (3)

ut 2 ¨; t = 0; : : : ; T: (4)

Dynamic programming is based on Bellman's principle of optimality. It argues that

the above problem can be solved by recursively solving Bellman's equations to ¯nd time

consistent policy functions. That is, both the objective function and constraints assume

that controls dated t, ut, in°uence state xt+s+1 and returns Ft+s(¢) for s ¸ t, but not

earlier. Accordingly, it is possible to split the optimization problem in sequences of opti-

mizations as suggested by Bellman's equations. These equations are

WT¡t+1(xt) = maxFt(xt;ut) + WT¡t(xt+1); t = 0; : : : ; T:
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They yield optimal policy functions (or feedback rules)

xt+1 = ft(xt); t = 0; : : : ; T ;

ut = ht(xt); t = 0; : : : ; T:

These policy functions are self-enforcing or time consistent in that, as time advances, there

is no incentive to depart from the original plan.

We wish to show that this recursion will yield the same solution as the one found in

Section 1. In that section, we have solved the problem recursively backward. In a sense,

we are doing the same here. Starting from the last period, period T , we de¯ne the value

function for the one-period problem by

W1(xT ) = maxFT (xT ;uT ) + W0(xT+1) subject to xT+1 = QT (xT ;uT );

where xT is given. The Lagrangian for this optimization is

L = FT (xT ;uT ) + W0(xT+1) + ¤T [QT (xT ;uT ) ¡ xT+1] :

The ¯rst-order conditions are

@L

@uT
= F2T (xT ;uT ) + Q2T (xT ;uT )¤T = 0;

@L

@xT+1
= W 0

0(xT+1) ¡ ¤T = 0;

These are the same ¯rst-order conditions found in Section 2 above. Then, as before, these

¯rst-order conditions and the transition function xT+1 = QT (xT ;uT ) can be used to solve

for feedback rules

xT+1 = fT (xT );

uT = hT (xT ):

¤T = `T (xT ):

We can now think of the two-period problem

W2(xT¡1) = maxFT¡1(xT¡1;uT¡1) + W1(xT ) subject to xT = QT¡1(xT¡1;uT¡1);

with xT¡1 given. The Lagrangian for this optimization is

L = FT¡1(xT¡1;uT¡1) + W1(xT ) + ¤T¡1 [QT¡1(xT¡1;uT¡1) ¡ xT ] :
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The ¯rst-order conditions are

@L

@uT¡1
= F2T¡1(xT¡1;uT¡1) + Q2T¡1(xT¡1;uT¡1)¤T¡1 = 0;

@L

@xT
= W 0

1(xT ) ¡ ¤T¡1 = 0:

The last condition requires solving for the derivative of the previous value function.

To ¯nd this derivative, we exploit a speci¯c property of value functions. This property is

an envelope condition (sometime called the Benveniste and Scheinkman condition). It is

obtained as follows. First, write the value function as

W1(xT ) = max FT (xT ;uT ) + W0 (xT+1))

= max FT (xT ;uT ) + W0 (QT (xT ;uT ))

= FT (xT ; hT (xT )) + W0 (QT (xT ; hT (xT ))) :

Totally di®erentiating the value function yields

W 0
1(xT ) = (F1T + Q1T W 0

0) +
@hT

@xT
(F2T + Q2T W 0

0) :

The initial set of ¯rst-order condition implies that

F2T (xT ;uT ) + Q2T (xT ;uT )W 0
0(xT+1) = 0:

Thus, the derivative of the value function is

W 0
1(xT ) = F1T (xT ;uT ) + Q1T (xT ;uT )W 0

0(xT+1):

Substituting the derivative of the value function in the last condition yields the fol-

lowing set of equations:

F2T¡1(xT¡1;uT¡1) + Q2T¡1(xT¡1;uT¡1)¤T¡1 = 0;

F1T (xT ;uT ) + Q1T (xT ;uT )¤T ¡ ¤T¡1 = 0;

xT = QT (xT¡1;uT¡1):

As before, these are the equations that permit us to write the feedback rules

xT = fT¡1(xT¡1);

uT¡1 = hT¡1(xT¡1);
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¤T¡1 = `T¡1(xT¡1):

Clearly, this recursion will yield the same solution as the one found in Section 1.

Finally, it is not necessary to use Lagrange multipliers. In fact, the optimization

WT¡t+1(xt) = maxFt(xt;ut) + WT¡t(xt+1); t = 0; : : : ; T:

subject to

xT+1 = QT (xT ;uT ); t = 0; : : : ; T;

can be solved by substituting the transition function in the value function

WT¡t+1(xt) = maxFt(xt;ut) + WT¡t (Qt(xt;ut)) :

In that case, the ¯rst-order condition is

F2t(xt;ut) + Q2t(xt;ut)W
0
T¡t(xt+1) = 0:

The Benveniste-Scheinkman condition is

W 0
T¡t+1(xt) = F1t(xt;ut) + Q1t(xt;ut)W

0
T¡t(xt+1):

6. An Economic Example Again

Recall our economic example:

max ln(c0) + ¯ ln(c1) + ¯2 ln((1 + r)a2)

subject to

at+1 = (1 + r)at ¡ ct; t = 0; 1;

a0 = ¹a0:

The one-period problem is

W1(a1) = max¯ ln(c1) + W0(a2);

subject to

a2 = (1 + r)a1 ¡ c1;

W0(a2) = ¯2 ln((1 + r)a2):
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Thus,

W1(a1) = max ¯ ln(c1) + W0 ((1 + r)a1 ¡ c1) :

The ¯rst-order condition is

¯
1

c1
¡ W 0

0 = 0

where W 0
0 = ¯2(1=a2): Thus, we have

¯
1

c1
¡ ¯2 1

a2
= 0;

a2 = (1 + r)a1 ¡ c1:

Which yields the policy functions

c1 = h1(a1) = (1 + r)

µ
1

1 + ¯

¶
a1;

a2 = f1(a1) = (1 + r)

µ
¯

1 + ¯

¶
a1:

The two-period problem is

W2(a0) = max ln(c0) + W1(a1);

subject to

a1 = (1 + r)a0 ¡ c0:

or

W2(a0) = max ln(c0) + W1 ((1 + r)a0 ¡ c0) :

The ¯rst-order condition is
1

c0
¡ W 0

1 = 0;

where

W 0
1 = W 0

0(1 + r) = (1 + r)¯2 1

a2
= ¯(1 + ¯)

1

a1
:

So, our equations are
1

c0
¡ ¯(1 + ¯)

1

a1
= 0;

a1 = (1 + r)a0 ¡ c0:

We ¯nd the policy functions

c0 = h0(a0) = (1 + r)

µ
1

1 + ¯(1 + ¯)

¶
a0;
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a1 = f0(a0) = (1 + r)

µ
¯(1 + ¯)

1 + ¯(1 + ¯)

¶
a0:

7. The In¯nite Horizon Problem

In this section we consider an extension of the ¯nite horizon problem to the case of in¯nite

horizon. To simplify the exposition, we will focus our attention to stationary problems.

The assumption of stationarity implies that the main functions of the problem are time

invariant:
Ft(xt;ut) = F (xt;ut);

Qt(xt;ut) = Q(xt;ut):

The result will be time invariant policy rules.

In general, to obtain an interior solution to our optimization problem, we require the

objective function to be bounded away from in¯nity. One way to achieve boundedness is

to assume discounting. However, the existence of a discount factor is neither necessary nor

su±cient to ensure boundedness. Thus, we de¯ne

F (xt;ut) = ¯tf(xt;ut):

A further assumption which is su±cient for boundedness of the objective function is bound-

edness of the return function in each period:

0 · f(xt;ut) < k < 1;

where k is some ¯nite number.

Our in¯nite horizon problem is:

max
1X

t=0

¯tf(xt;ut) (P1)

subject to
xt+1 = Q(xt;ut); t = 0; : : : ; T ;

x0 = ¹x0:

The Bellman equation is

Wj(xt) = ¯tf(xt;ut) + Wj¡1(xt+1):
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We can rewrite this equation in current value. To do so, simply de¯ne the current value

function

Vj(xt) = ¯¡tWj(xt)

such that

Vj(xt) = f(xt;ut) + ¯Vj¡1(xt+1):

Often, authors will simply abstract from the time subscript and write

Vj(x) = f(x;u) + ¯Vj¡1(x
0);

where x0 denotes next-period values.

There is a theorem in Bertsekas (1976) which states that, under certain conditions,

iterations of the current value Bellman equations converge as j ! 1. In this case, the

limit function satis¯es the following version of Bellman's equation:

V (x) = max f(x;u) + ¯V (x0):

This limiting function is the optimal value function for our problem

V (x0) = max
1X

t=0

¯tf(xt;ut);

where the maximization is subject to xt+1 = Q(xt;ut) and x0 given. It also turns out that

it gives rise to a unique time-invariant optimal policy of the form ut = h(xt). Finally, this

limiting function generates the Benveniste-Scheinkman condition

V 0(x) = f1(x;u) + ¯Q1(x;u)V 0(x0):

The above suggests that there are three ways to solve the optimization problem P1.

The ¯rst method uses the Benveniste-Scheinkman condition, the second uses guesses of

the value function, and the third uses iterations.

Method 1: Benveniste-Scheinkman

First, set up the Bellman equation:

V (x) = max f(x;u) + ¯V (x0):

subject to x0 = Q(x;u) and x0 given.

Second, ¯nd the ¯rst-order condition:

f2(x;u) + ¯Q2(x;u)V 0(x0) = 0:
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Three, use the Benveniste-Scheinkman condition:

V 0(x) = f1(x;u) + ¯Q1(x;u)V 0(x0):

This should allow you to write an Euler equation. In theory, this Euler equation may

be used to uncover the optimal decision rule u = h(x) that solves the problem.

Method 2: Undetermined Coe±cients

This method only works on a limited set of problems. The idea is to guess the value

function, and then verify this guess.

First, set up the Bellman equation:

V (x) = max f(x;u) + ¯V (x0):

subject to x0 = Q(x;u) and x0 given.

Second, guess the form of the value function: V (x) = V g(x). Substitute the guess in

the Bellman equation

V (x) = max f(x;u) + ¯V g(x0):

subject to x0 = Q(x;u) and x0 given.

Three, perform the maximization and obtain policy rule hg(x). Substitute the policy

rule the in value function

V (x) = f(x; hg(x)) + ¯V g(Q(x; hg(x)):

Fourth, verify that the form of V (x) is the same as V g(x0):

V g(x) = f(x; hg(x)) + ¯V g(Q(x; hg(x)):

If the guess is correct, the problem is solved. If the guess is incorrect, try the form of

the value function that is suggested by the ¯rst guess as a second guess, and repeat

the process.

Method 3: Iterations.

First, set up the Bellman equation:

V1(x) = max f(x;u) + ¯V0(x
0):

subject to x0 = Q(x;u) and x0 given.
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Second, set V0 = g(x), for a function g(¢), as a starting point. Solve the remaining

optimization problem

V1(x) = max f(x;u) + ¯g(x0)

subject to x0 = Q(x;u). This should yield a policy function u = h1(x).

Third, substitute the policy function in the return function

V1(x) = f(x; h1(x)) + ¯g(Q(x; h1(x))

and write the new Bellman equation

V2(x) = max f(x;u) + ¯V1(x
0)

subject to x0 = Q(x;u). This should yield a policy function u = h2(x).

Fourth, substitute the policy function in the return function

V2(x) = f(x; h2(x)) + ¯V1(Q(x; h2(x)):

Write the new Bellman equation

V3(x) = max f(x;u) + ¯V2(x
0)

subject to x0 = Q(x;u). This should yield a policy function u = h3(x).

Fifth, continue iterating until the value function Vj(x) converges to V (x). The control

rule associated with the converged value solves the problem.

8. The Economic Example in In¯nite Horizon

Consider the following problem:

max
1X

0

¯t ln(ct)

subject to
at+1 = (1 + r)at ¡ ct;

a0 = ¹a0:

We can solve the above problem using all three methods. We start with method 3.

Method 1: Benveniste-Scheinkman
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The Bellman equation is:

V (a) = max ln(c) + ¯V (a0) subject to a0 = (1 + r)a ¡ c:

The optimization is

V (a) = max ln(c) + ¯V ((1 + r)a ¡ c):

The ¯rst-order condition is
1

c
¡ ¯V 0(a0) = 0:

The Benveniste-Scheinkman condition is

V 0(a) = ¯V 0(a0)(1 + r):

Accordingly,

V 0(a) =
1

c
(1 + r) and V 0(a0) =

1

c0 (1 + r):

Then,
1

c
= (1 + r)¯

1

c0

or

¯
ct

ct+1
=

1

1 + r
:

This last equation is our Euler equation. We rewrite it as

ct+1 = ¯(1 + r)ct

or

ct+j = (¯(1 + r))
j
ct:

To solve for the optimal policy rule, we require the transition function

at+1 = (1 + r)at ¡ ct:

We can rewrite it as

at =
1

1 + r
(at+1 + ct):

If we lead this forward one period and substitute it back in the transition function, we

obtain

at =

µ
1

1 + r

¶2

at+2 +

µ
1

1 + r

¶2

ct+1 +
1

1 + r
ct:
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Repeating this forward substitution suggests that

at =

µ
1

1 + r

¶T

at+T +
1

1 + r

T¡1X

j=0

µ
1

1 + r

¶j

ct+j :

In the limit,

lim
T!1

µ
1

1 + r

¶T

at+T = 0:

Thus,

(1 + r)at =
1X

j=0

µ
1

1 + r

¶j

ct+j:

We can substitute in our Euler equation to obtain

(1 + r)at =
1X

j=0

µ
1

1 + r

¶j

(¯(1 + r))j ct

=
1X

j=0

¯jct:

Now, it is simple to show that

1X

j=0

¯j = 1 + ¯ + ¯2 + : : : =
1

1 ¡ ¯
:

For example, de¯ne S = 1+¯+¯2 + : : :. Then, ¯S = ¯+¯2 +¯3 + : : :. Finally, S ¡¯S = 1

and S = 1=(1 ¡ ¯).

Collating these terms, we obtain our optimal policy rule

ct = h(at) = (1 ¡ ¯)(1 + r)at; t ¸ 0;

at+1 = f(at) = ¯(1 + r)at; t ¸ 0:

Method 2: Undetermined Coe±cients

The Bellman equation is:

V (a) = max ln(c) + ¯V (a0) subject to a0 = (1 + r)a ¡ c:

Guess the value function: V g(a) = Á + µ ln(a). The optimization is

V (a) = max ln(c) + ¯Á + ¯µ ln((1 + r)a ¡ c):
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The ¯rst-order condition is
1

c
¡ ¯µ

a0 = 0:

This condition implies that

a0 = ¯µc = (1 + r)a ¡ c:

Thus,

c = h(a) =

µ
1 + r

1 + ¯µ

¶
a:

Substituting our policy function in the Bellman equation, we obtain

V (a) = ln

·µ
1 + r

1 + ¯µ

¶
a

¸
+ ¯Á + ¯µ ln

·
(1 + r)a ¡

µ
1 + r

1 + ¯µ

¶
a

¸
:

Thus,

Á + µ ln(a) = ln

·µ
1 + r

1 + ¯µ

¶
a

¸
+ ¯Á + ¯µ ln

·
(1 + r)a ¡

µ
1 + r

1 + ¯µ

¶
a

¸
:

Collecting terms on the right hand side, we ¯nd that

Á + µ ln(a) = (1 + ¯µ) ln

·
1 + r

1 + ¯µ

¸
+ ¯Á + ¯µ ln(¯µ) + (1 + ¯µ) ln(a):

Comparing both sides of the equation suggests that

µ = 1 + ¯µ =) µ =
1

1 ¡ ¯
;

Á = (1 + ¯µ) ln

·
1 + r

1 + ¯µ

¸
+ ¯Á + ¯µ ln(¯µ):

The last condition can be solved for Á.

We have thus veri¯ed our guess. The value function is

V (at) = Á +
1

1 ¡ ¯
ln(at)

with Á de¯ned above. The optimal policy rule is

ct = h(at) =

µ
1 + r

1 + ¯µ

¶
at = (1 ¡ ¯)(1 + r)at:

Finally, our system evolves according to

ct = (1 ¡ ¯)(1 + r)at; t ¸ 0;
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at+1 = ¯(1 + r)at; t ¸ 0:

Method 3: Iterations.

The Bellman equation is:

V (a) = max ln(c) + ¯V (a0) subject to a0 = (1 + r)a ¡ c:

As a starting point, set V0 = ln(a). The optimization is

V1(a) = max ln(c) + ¯ ln((1 + r)a ¡ c):

The ¯rst-order condition is
1

c
¡ ¯

a0 = 0:

This condition implies that

a0 = ¯c = (1 + r)a ¡ c:

Thus,

c = h1(a) =

µ
1 + r

1 + ¯

¶
a:

Substitute this policy function in the value function to ¯nd

V1(a) = ln(h1(a)) + ¯ ln((1 + r)a ¡ h1(a))

= ln

·µ
1 + r

1 + ¯

¶
a

¸
+ ¯ ln

·
(1 + r)a ¡

µ
1 + r

1 + ¯

¶
a

¸
;

= Á1 + (1 + ¯) ln(a);

with Á1 = (1 + ¯) ln[(1 + r)=(1 + ¯)] + ¯ ln(¯).

We can then write a new value function as

V2(a) = max ln(c) + ¯V1(a
0) = max ln(c) + ¯Á1 + ¯(1 + ¯) ln(a0):

The optimization is

V2(a) = max ln(c) + ¯Á1 + ¯(1 + ¯) ln((1 + r)a ¡ c):

The ¯rst-order condition is
1

c
¡ ¯(1 + ¯)

a0 = 0:

This condition implies that

a0 = ¯(1 + ¯)c = (1 + r)a ¡ c:

17



Thus,

c = h2(a) =

µ
1 + r

1 + ¯ + ¯2

¶
a:

Substitute this policy function in the value function to ¯nd

V2(a) = ln(h2(a)) + ¯Á1 + ¯(1 + ¯) ln((1 + r)a ¡ h2(a))

= ln

·µ
1 + r

1 + ¯ + ¯2

¶
a

¸
+ ¯Á1 + ¯(1 + ¯) ln

·
(1 + r)a ¡

µ
1 + r

1 + ¯ + ¯2

¶
a

¸

= Á2 + (1 + ¯ + ¯2) ln(a):

Continuing this iterative process we ¯nd that

hj(a) =

Ã
1 + r

Pj
i=0 ¯i

!
a;

Vj(a) = Áj +

Ã
jX

i=0

¯i

!
ln(a):

Then, if we let j ! 1 we ¯nd that

h(a) = lim
j!1

hj(a) = (1 ¡ ¯)(1 + r)a;

V (a) = lim
j!1

Vj(a) = Á +
1

1 ¡ ¯
ln(a):

Thus, our system evolves according to

ct = (1 ¡ ¯)(1 + r)at; t ¸ 0;

at+1 = ¯(1 + r)at; t ¸ 0:

18



9. Summary

To summarize, here is the simple cookbook. Assume that you face the following problem:

max
1X

t=0

¯tf(xt;ut)

subject to
xt+1 = Qt(xt;ut); t = 0; : : : ; T ;

x0 = ¹x0:

Here is how to proceed:

Step 1 Set up the Bellman equation:

V (x) = max f(x;u) + ¯V (x0):

subject to x0 = Q(x;u) and x0 given.

Step 2 Substitute transition function in the Bellman equation:

V (x) = max f(x;u) + ¯V (Q(x;u)) :

Step 3 Find the ¯rst-order condition:

f2(x;u) + ¯Q2(x;u)V 0(x0) = 0:

Step 4 Find the Benveniste-Scheinkman condition:

V 0(x) = f1(x;u) + ¯Q1(x;u)V 0(x0):

Step 5 Find the optimal policy function:

u = h(x):
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